Связаться с нами
Закрыть
Назад в блог

Решающий момент: модели атрибуции и как с ними работать

#аналитика
05 февраля 692 просмотра 7 минут на чтение
Рассказывает
Иван Барченков
Коммерческий директор

В Google Analytics мы можем посмотреть, сколько раз пользователь взаимодействовал с сайтом, при помощи каких каналов он на него попал и как эта цепочка в итоге завершилась. Но как понять, какой именно канал принес продажу? Здесь помогут модели атрибуции.

Представим следующую цепочку. Мы «поймали» пользователя при помощи контекстной рекламы, он пришел на сайт, оставил свою почту. Он ушел, но через некоторое время его «догнали» при помощи email-маркетинга. Пользователь вернулся на сайт, ушел с него, потом снова вернулся через запрос в поиске и снова ушел. Мы вернули его ремаркетингом, он посетил сайт, ушел, а через некоторое время вернулся на сайт, и он, наконец, совершил покупку.  

В этой ситуации возникает вопрос: какой же из каналов в действительности считать ценным? Ответ могут дать модели атрибуции. Модель атрибуции – это набор правил, которые определяют ценность рекламных каналов на пути к конверсии.

Моделей атрибуции в Google Analytics достаточно много. В основной массе отчетов используется модель, которая называется последний непрямой клик. Что это значит? Если мы разложим цепочку коммуникации с пользователем сайта, то мы получим, что последний непрямой клик атрибутирует целевое действие (заявку, транзакцию, заказ), которое идет за один шаг до direct/none (прямой заход на сайт или из «закладок»).

Мы привели пользователя через рекламу, «догнали» его email-рассылкой, SEO. Он пришел к нам на сайт, ушел, снова вернулся. В самом конце пользователь совершил целевое действие, и мы эту транзакцию атрибутировали только четвертому (в данном примере) каналу в очереди. На этом этапе ряд бизнесов начинает делать не совсем верные выводы. Решив, что этот четвертый канал приносит большое количество транзакций, они повышают по нему ставки, игнорируя другие каналы. А это неправильно.

Есть и другая логика, которую мы можем построить из модели под названием первое взаимодействие. В этой модели транзакция атрибутируется первому рекламному каналу вне зависимости от того, насколько длинной была цепочка взаимодействия пользователя с сайтом, из скольких шагов она состояла и сколько времени она заняла. Правильно ли это? Тоже нет. Человек пришел на сайт один раз, и без email-рассылок, ремаркетинга и других рекламных каналов он вряд ли бы снова вспомнил об сайте.

Зеркальное отражение предыдущей модели – модель последнее взаимодействие, когда транзакция атрибутируется последнему касанию. И здесь тоже есть некоторая смысловая ошибка. До direct/non пользователь доходит через какую-то определенную цепочку каналов. Он может запомнить адрес сайта из-за email-рассылки и ввести его в браузерную строку. Либо на него может повлиять контекстная реклама или ремаркетинг. В этом случае мы можем сделать предположение, что данная модель также не описывает реального положения дел и реального вклада каждого канала в то, что человек совершил какую-то транзакцию и принес в конечном итоге прибыль для компании.

Следующая модель – линейная. Она берет то количество денег (целевых действий), которое принес пользователь в рамках данной цепочки, и делит их на количество шагов в рамах данной цепочки. Получается, что все каналы между собой уравниваются. Например, у нас была одна транзакция и пять шагов. Соответственно, 0,2 дохода от транзакции мы атрибутируем на каждый канал в этой цепочке. И снова вопрос: как нам правильно распределять рекламный бюджет? Ведь все каналы между собой усредняются. Кроме того, возможны цепочки и короче. Модель не будет реально отражать эффективность бизнеса. Мы не сможем принимать правильные решения относительно того, как правильно распределить рекламные бюджеты между разными каналами.



Еще одна модель – временной спад. Наибольшую ценность получает канал, который находится последним в цепочке, а наименьшую ценность канал, который находится в цепочке первым. Получается, что максимальный вес мы отдадим каналу direct/non. Но это не рекламный канал, и мы не можем перераспределить на него рекламные деньги и как-либо повлиять на него.

И наконец та, модель, на которой необходимо остановиться подробнее – модель атрибуций на основе позиций. Создать ее можно кастомно.

Суть заключается в том, Google Analytics позволяет задать по умолчанию некую ценность, которую вы хотите атрибутировать на канал, который изначально привел пользователя. Далее у нас есть последний канал, который клиента «дожал». Ему тоже присваивается такая же ценность, как и первому. Остается некоторое промежуточное звено, которое состоит в нашем случае из трех каналов. По умолчанию можно присвоить усредненное значение ценности.

Но опять сложность. Последним снова является direct/non, на который мы повлиять не можем. Здесь на помощь нам приходит создание сложных правил и условий, которые сочетаются между собой операторами И/ИЛИ. Например, мы можем указать, что на первый канал у нас приходится ценность в 40%, на промежуточное звено – 20%, на последний канал – 40%. Но если последнее взаимодействие – это direct/non, то в этом случае мы ему присваиваем ему нулевую ценность. Таким образом, последнее взаимодействие в рамках данной конкретной цепочки сместится на шаг влево, и мы получим более-менее понятную картинку. Здесь мы должны посмотреть, какие каналы были до брендового и начать увеличивать ставки именно на эти рекламные каналы, так как они будут увеличивать количество запросов бренда в поисковых системах.

В чем подвох?

В каждом бизнесе существует определенный срок, в течение которого пользователь принимает решение о покупке. Например, для сферы недвижимости, это может быть целый год. И тут в работе с Google Analytics может возникнуть проблема: вся цепочка взаимодействий с пользователем записывается только в течение 90 дней. Что делать в таком случае? Выгружать данные с Google Analytics во внешнее хранилище, хранить все эти данные на срок работы с клиентом и затем строить атрибуционные модели самостоятельно. С их помощью удастся понять, в какой рекламный канал необходимо инвестировать деньги, чтобы в рамках срока принятия решения о покупке количество транзакций и, соответственно, доход, увеличивались.

Модели атрибуций в деле

MediaNation использовали модели атрибуции в рамках работы над увеличением продаж интернет-магазина мебели TheFurnish. Мы выгрузили из Google Analytics данные по всем цепочкам, которые приводили пользователя к покупке, и поняли, что в среднем пользователям нужно около 80 дней на принятие решения. Таким образом, внутренние отчеты Analytics нам подошли, и выгружать данные во внешнее хранилище не было необходимости.

Далее мы расписали рекламные каналы в рамках всех этих цепочек и распределили вес и ценность каждого канала. Все это было сделано при помощи атрибуционной модели на основе позиций. После принятия решений мы выгрузили новые ставки и бюджеты тех рекламных кампаний, которых мы раньше не замечали и считали неэффективными. Мы уменьшили вес брендовых запросов, трафика с рассылок, трафика с прямых заходов, а также расширили окно оценки эффективности с 30 до 90 дней.

Результат. Уже через квартал мы увидели следующее: за счет правильного распределения рекламного бюджета доход клиента увеличился на 20 %.

Советы вместо вывода

Постарайтесь отходить от базовых отчетов Яндекс.Метрики и Google Analytics, которые показывают не совсем приближенные к жизни атрибуционные модели.

Перестаньте думать об эффективности каждого конкретного канала, потому что зацикленность на KPI и урезание одних каналов приводит к тому, что другие каналы начинают работать хуже.

Необходимо помнить, что всю цепочку взаимодействий с пользователем Google Analytics записывает только в течение 90 дней. Если срок принятия решения о покупке больше, то данные нужно выгружать во внешнее хранилище.

Другие статьи по теме
17 сентября 5618 просмотров 7 минут
#аналитика
Что такое веб-аналитика, а также сервисы и системы для её проведения
Почти все сайты подключены к системам Яндекс.Метрики и Google Analytics. Счетчики установлены, отчеты создаются. Правда, во многих случаях аналитика заканчивается именно на этом этапе. Как организовать действительно эффективную работу по веб-аналитике сайта и сделать ее важной частью бизнеса – в нашем лонгриде.
15 января 2890 просмотров 6 минут
#аналитика
Цели в Google Analytics: как создать, настроить и установить
06 октября 1365 просмотров
#аналитика
Что такое Big Data простыми словами
Большие данные становятся неотъемлемой частью нашей жизни. Все мы ежедневно используем какие-либо технологии и контактируем с продуктами и крупными компаниями. Компании предлагают нам свои продукты и, в свою очередь, используют данные, которые мы им предоставляем (начиная от отслеживания переходов на сайте и заканчивая персональной информацией при оформлении заказов). Настал момент подробнее разобраться, как собираются эти огромные потоки информации и что с ними делают.
10 сентября 727 просмотров
#аналитика
Customer Journey Map: что это, зачем, источники информации, где и как визуализировать
«Клиент редко покупает то, что бизнес ему продает», – сказал Питер Друкер, один из известных теоретиков менеджмента. Многие клиенты вкладывают другие смыслы в ваши товары и приходят к покупке с помощью тех каналов, которым вы, возможно, не уделяли внимание.
22 июля 2849 просмотров 4 минуты
#аналитика
CRM-системы: что это такое и зачем они нужны
Автоматизация рабочих процессов сейчас – это привилегия не только крупного бизнеса. IT-технологии развились до такой степени, что различные аналитические системы и другие нужные продукты стали доступны малым и средним компаниям. В том числе и программы для автоматизации работы с клиентами. Если вы все еще сомневаетесь в необходимости внедрения CRM-системы, то эта статья для вас.
20 июля 655 просмотров 4 минуты
#аналитика
Применение машинного обучения в Google таблицах с помощью библиотеки Tensorflow.js и Google Apps скрипта
Тема машинного обучения сейчас очень актуальна и продолжает набирать обороты. Машинное обучение — это алгоритм, с помощью которого система распознает данные и их закономерности, предсказывает значения на основе обученной модели.
02 июня 748 просмотров 3 минуты
#аналитика
Сервис передачи расходов из Яндекс.Маркета в Яндекс.Метрику
MediaNation начала работу над созданием собственного сервиса стриминга данных – StreamMyData. Первый коннектор, который представлен в системе, позволяет передавать данные о расходах из Яндекс.Маркета в Яндекс.Метрику. Это означает, что в Метрике вы сможете видеть расходы по Яндекс.Маркету, сопоставлять их с данными по продажам и доходу и принимать решения о том, как повысить эффективность размещения на Яндекс.Маркете.
27 мая 607 просмотров 1 минута
#аналитика
Как в Google BigQuery разделить значение столбца по символу
Часто в UTM-метках используется символ вертикальной черты (|), который разделяет параметры визуально. В результате при передаче таких данных в базу два важных параметра попадают в один столбец, что затрудняет их дальнейший анализ. Возникает вопрос: как их “физически” разделить, если работа с данными ведется в Google BigQuery?
20 мая 2169 просмотров 8 минут
#аналитика
Кейс: сквозная аналитика для Tilda-сайта и нестандартной CRM
Мы привыкли, что сквозная аналитика востребована в крупном ритейле, и для ее обеспечения используются большие сложные CRM. Однако этот кейс демонстрирует, что связь транзакций и источников лидов интересует всех, кто хочет грамотно подходить к маркетингу. Даже модных блогеров, чьи сайты созданы на Tilda, а используемая CRM ограничена в функционале.
23 апреля 545 просмотров 8 минут
#аналитика
Маркетинговая аналитика во времена COVID-19 – опыт Google
На днях Thinkwithgoogle.com опубликовал материал своего руководителя отдела стратегической аналитики, Авинаша Кошика, где тот рассказывает, от какой аналитической работы его отдел отказался на период пандемии, а какую продолжает вести. Любопытный материал с точки зрения отношения (очень) крупного бизнеса к текущей ситуации. Приводим наиболее интересные тезисы.
Давайте работать?
Мы верим в ваш бизнес
Наверх